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A link between the two-body and three-body interaction energies
of fluids from molecular simulation
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Molecular simulation data are reported that indicate that there is a simple empirical relationship
between two-body and three-body interaction energies. The significance of this relationship is that
three-body interactions can be estimated accurately from two-body interactions without incurring
the computational penalty of three-body calculations. The relationship is tested by performing Gibbs
ensemble simulations for the vapor–liquid equilibria of argon. The results are in good agreement
with calculations that explicitly evaluate all three-body interactions. ©2000 American Institute of
Physics.@S0021-9606~00!50413-9#
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I. INTRODUCTION

Advances in molecular simulation algorithms1 coupled
with rapid growth in the calculation speed of modern hi
performance computers, provide unprecedented opport
ties to investigate natural phenomena from a molecular
spective. Molecular simulation has been applied to the
sign of beneficial pharmaceutical products,2 the optimization
of important industrial processes,2 and to the resolution o
fundamental scientific questions.3,4 Despite the use of high
performance computing, molecular simulation is confin
largely to the calculation of two-body interactions using ‘‘e
fective’’ intermolecular potentials. The inclusion of three-
more-body interactions remain computationally prohibitiv
In this work, we report molecular simulation data that ind
cate there is a simple empirical relationship between tw
body and three-body interaction energies for noble gas
oms. The significance of this relationship is that three-bo
interactions can be estimated accurately from two-body
teractions without incurring the computational penalty
three-body calculations. The relationship has the potentia
improving both the accuracy and predictive value of mole
lar simulation.

The appeal and usefulness of molecular simulation
that it often allows an accurate calculation of natural p
nomena without the plethora of approximations and assu
tions that limit the usefulness of conventional theoretical
proaches to prediction and estimation. The key theoret
assumptions of molecular simulation are the following: t
choice of intermolecular potential used to calculate inter
tions between molecules; and how many molecules con
ute to the intermolecular interaction. It is commonly assum
that intermolecular interactions are confined to pairs of m
ecules, and contributions involving three, four, or more
oms are ignored. When this assumption is invoked, the
lecular properties are assumed to be ‘‘pair-additive
Generally, interactions between pairs5 of molecules make the

a!Author to whom correspondence should be addressed. Electronic
RSadus@swin.edu.au
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overwhelming contribution to the overall intermolecular i
teraction. However, it is also documented6 that three-body
interactions can make a significant contribution to interm
lecular interactions in liquids. Despite this, molecular sim
lations rarely account rigorously for the effect of three-bo
interactions.7–13 Instead, the typical molecular simulation a
sumes pair additivity, and uses a simple ‘‘effective’’ inte
molecular potential in which many-body effects are said
be included in the values of the intermolecular paramete

The use of ‘‘effective’’ intermolecular potentials is
source of considerable inaccuracy and uncertainty in mole
lar simulations. For example, recent calculations12 have
shown that three-body interactions contribute significantly
the phase behavior of fluids, whereas this effect had b
hidden previously by the use of effective intermolecular p
tentials. The agreement between experiment and theory
the phase envelope was improved considerably by explic
accounting for three-body interactions. However, account
for three-body interactions requires considerably more co
puting resources than simple pair interactions. In the wo
case, the computing time of a system ofN molecules scales
in proportion toN2 for pair interactions, compared withN3

for three-body interactions. Although computation-time sa
ing algorithms have been developed1 to avoid the worst case
scenario, accounting for three-body interactions typically
quires at least one order of magnitude more computing t
than simple pair calculations. This means that such calc
tions are far from routine, even with today’s high perfo
mance computers. However, because of the importanc
three-body interactions, it is highly desirable to include the
in molecular simulations.

II. THEORY

A. Intermolecular potentials

The Barker–Fisher–Watts15 ~BFW! potential was used
for the pair interactions of argon, and the potentials repor
by Barkeret al.16 were used to represent the pair interactio
il:
2 © 2000 American Institute of Physics
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of krypton and xenon. The BFW potential is a linear com
nation of the Barker–Pompe17 (uBP) and Bobetic–Barker18

(uBB) potentials,

u2~r !50.75uBB~r !10.25uBP~r !, ~1!

where the potentials of Barker–Pompe and Bobetic–Ba
have the following form:

u2~r !5eS (
i 50

5

Ai~x21! i exp@a~12x!#2(
j 50

2
C2 j 16

d1x2 j 16D .

~2!

In Eq. ~2!, e is the depth of the potential;x5r /r m , wherer m

is the intermolecular separation at which the potential ha
minimum value. The contribution from repulsion has an e
ponential dependence on intermolecular separation and
contribution to dispersion of theC6 , C8 , and C10 coeffi-
cients are included. Thed parameter is a small correctio
term. The parameters of Eq.~2! are obtained by fitting the
potential to experimental data for molecular beam scatter
second virial coefficients, and long-range interaction coe
cients. The values of the parameters used in this work w
obtained from the literature15 and they are summarized i
Table I.

For krypton and xenon, the Barkeret al.16 potential has
the form

u2~r !5u0~r !1u1~r !, ~3!

whereu0(r ) is identical to Eq.~2! andu1(r ) is given by

u1~r !5H @P~x21!41Q~x21!5#exp@a8~12x!#, x.1,

0, x<1,
~4!

TABLE I. Summary of the intermolecular potential parameters used in
work.

Argona Kryptonb Xenonc

n ~a.u.!d 518.3 1572 5573
e/k ~K! 142.095 201.9 281.0
s ~Å! 3.3605 3.573 3.890
r m ~Å! 3.7612 4.0067 4.3623

Barker–Pompe Bobetic–Barker
a 12.5 12.5 12.5 12.5
a8 12.5 12.5
d 0.01 0.01 0.01 0.01
A0 0.2349 0.292 14 0.235 26 0.240
A1 24.7735 24.414 58 24.786 86 24.8169
A2 210.2194 27.701 82 29.2 210.9
A3 25.2905 231.9293 28.0 225.0
A4 0.0 2136.026 230.0 250.7
A5 0.0 2151.0 2205.8 2200.0
P 29.0 59.3
Q 68.67 71.1
C6 1.0698 1.119 76 1.0632 1.0544
C8 0.1642 0.171 551 0.1701 0.166
C10 0.0132 0.013 748 0.0143 0.032

aTwo-body parameters from Ref. 15.
bTwo-body parameters from Ref. 16.
cTwo-body parameters from Ref. 16.
dFrom Ref. 19.
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anda8, P, andQ are additional parameters obtained by fi
ting data for differential scattering cross sections. The
rameters for this potential were obtained from the literatur16

~Table I!.
The contribution from three-body interactions was o

tained from the triple-dipole formula proposed by Axilro
and Teller,20

uDDD~ i jk !5
n~113 cosu i cosu j cosuk!

~r i j r ikr jk!3 , ~5!

where n is the nonadditive coefficient, and the angles a
intermolecular separations refer to a triangular configurat
of atoms. Values of the nonadditive coefficients were o
tained from the work of Leonard and Barker19 ~Table I!. It
should be noted that although there are other contributi
from three-body interactions, recent work12 confirms that
they largely cancel each other, and that the Axilrod–Te
term alone is an excellent approximation for the total thr
body interaction. A recent review of intermolecular pote
tials is available.1

B. Simulation details

We performed NVT Monte Carlo1 and NVT Gibbs
ensemble14 simulations for 500 atoms of argon, krypton, an
xenon. The simulations were performed in cubic boxes,
the conventional periodic boundary conditions were applie1

For pair interactions, long-range corrections were used
recover the full contribution to the intermolecular potenti
whereas three-body interactions were assumed to be ze
separations greater than a quarter of the box length.12 For the
NVT simulations, a total of 40 000 cycles were used, w
averages being accumulated after 20 000 cycles. The
length for the NVT Gibbs ensemble calculations was 30
with averages being accumulated after 1500 cycles. E
cycle of the Gibbs ensemble simulation involved 500
tempted displacements, one volume interchange, and 50
terchange attempts. The two-body energy (E2) was obtained
by averaging the contribution of the pair potential over
distinct pairs of atoms, whereas the three-body energy (E3)
is the average of the Axilrod–Teller20 potential for all dis-
tinct triplets of atoms. The three-body simulations requ
typically 20 and 12 CPU hours on the Fujitsu VP300 a
NEC SX-4/32 supercomputers, respectively.

III. RESULTS AND DISCUSSION

The ratio of three-body (E3) to two-body (E2) energies
obtained from the NVT simulations is shown in Fig. 1 as
function of reduced number density (r* 5rs3, where r
5N/V, N is the number of atoms,V is the volume, ands is
the molecular diameter!. The temperatures used covered t
temperature range for vapor–liquid coexistence of a p
fluid. It is apparent that the ratio is a linear function of de
sity that is consistent with theoretical considerations.21–23

Furthermore, within the statistical uncertainties of the sim
lation, the results for argon, krypton, and xenon appea
obey the same relationship. A least-squares fit of the sim

s
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lation data for argon, krypton, and xenon yields the follo
ing empirical relationship between two-body and three-bo
energies:

E352
2nrE2

3es6 . ~6!

As E2 is generally negative,E3 is positive, which is consis-
tent with simulation data. The above equation is a rema
ably simple result that fits all the simulation data with
average absolute deviation of 2.0%. The only constant
Eq. ~6! are the well-known parameters~e and s! that char-
acterize all pair potentials, and a nonadditive coefficient~n!.
The relationship is independent of temperature for the ra
of densities at which the fluid is normally a liquid.

The benefit of Eq.~6! is that an accurate estimate of th
three-body energy for fluid densities can be obtained fr
two-body calculations alone. To test the accuracy of this
lationship, we performed Gibbs ensemble14 simulations for
the phase equilibria of argon with the energies calcula
from the BFW potential plus the contribution from Eq.~6!.
The Gibbs ensemble calculations were performed by
determining the contribution of two-body interactions. T
two-body contribution was used in Eq.~6! to determine the
contribution of three-body interactions. The combined tw
body and three-body energies were then used to determ
the acceptance of the Monte Carlo move. The results of th
calculations are compared in Fig. 2 with both experimen
data24 and the full two-body1three-body calculation re
ported elsewhere.12 The comparison indicates that the resu
obtained using Eq.~6! are nearly identical to the ful
two-body1three-body calculations.

It should be noted that, strictly speaking, the validity
the relationship is tied to the pair and three-body potent

FIG. 1. The ratio of three-body and two-body energies obtained from
lecular simulation at different reduced densities. Results are shown for a
~n!, krypton ~1!, and xenon~h!. The line through the points was obtaine
from Eq. ~6!.
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used in the simulations, and only three different atoms w
considered. However, if these potentials genuinely reflect
contribution of two-body and three-body interactions, the
sult could be valid generally. We emphasize that the relati
ship should not be used for effective potentials such as
Lennard-Jones potential. The accuracy of the single relat
ship for argon, krypton, and xenon may also indicate that
result is valid for other atoms.

IV. CONCLUSIONS

Molecular simulation data indicate that there is a sim
relationship between two-body and three-body energ
Therefore, the contribution to the energy of three-body int
actions can be estimated accurately from two-body contri
tions without incurring the computational penalty of thre
body calculations. The relationship has the potential
improving both the accuracy and predictive value of mole
lar simulation.
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