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A link between the two-body and three-body interaction energies
of fluids from molecular simulation
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Molecular simulation data are reported that indicate that there is a simple empirical relationship
between two-body and three-body interaction energies. The significance of this relationship is that
three-body interactions can be estimated accurately from two-body interactions without incurring
the computational penalty of three-body calculations. The relationship is tested by performing Gibbs
ensemble simulations for the vapor—liquid equilibria of argon. The results are in good agreement
with calculations that explicitly evaluate all three-body interactions.2@0 American Institute of
Physics[S0021-9606800)50413-9

I. INTRODUCTION overwhelming contribution to the overall intermolecular in-
teraction. However, it is also documenietiat three-body
Advances in molecular simulation algorithtnsoupled  interactions can make a significant contribution to intermo-
with rapid growth in the calculation speed of modern highjecular interactions in liquids. Despite this, molecular simu-
performance computers, provide unprecedented opportunjations rarely account rigorously for the effect of three-body
ties to investigate natural phenomena from a molecular pefinteractions.~*® Instead, the typical molecular simulation as-
spective. Molecular simulation has been applied to the desymes pair additivity, and uses a simple “effective” inter-
sign of beneficial pharmaceutical produttiie optimization  molecular potential in which many-body effects are said to
of important industrial processésand to the resolution of pe included in the values of the intermolecular parameters.
fundamental scientific questiofé.Despite the use of high The use of “effective” intermolecular potentials is a
performance computing, molecular simulation is confinedsoyrce of considerable inaccuracy and uncertainty in molecu-
largely to the calculation of two-body interactions using “ef- |ar simulations. For example, recent calculatidnbave
fective” intermolecular potentials. The inclusion of three- or shown that three-body interactions contribute significantly to
more-body interactions remain computationally prohibitive.the phase behavior of fluids, whereas this effect had been
In this WOI‘k, we I’epOI"[ molecular simulation data that indi- hidden previous|y by the use of effective intermolecular po-
cate there is a simple empirical relationship between twotentials. The agreement between experiment and theory for
body and three-body interaction energies for noble gas athe phase envelope was improved considerably by explicitly
oms. The significance of this relationship is that three-bodyaccounting for three-body interactions. However, accounting
interactions can be estimated accurately from two-body infor three-body interactions requires considerably more com-
teractions without incurring the computational penalty ofpyting resources than simple pair interactions. In the worst
three-body calculations. The relationship has the potential ¢ase, the computing time of a systemNmolecules scales
improving both the accuracy and predictive value of molecuin proportion toN? for pair interactions, compared witki®
lar simulation. for three-body interactions. Although computation-time sav-
The appeal and usefulness of molecular simulation isng algorithms have been developed avoid the worst case
that it often allows an accurate calculation of natural phescenario, accounting for three-body interactions typically re-
nomena without the plethora of approximations and assumpyuires at least one order of magnitude more computing time
tions that limit the usefulness of conventional theoretical apthan simple pair calculations. This means that such calcula-
proaches to prediction and estimation. The key theoreticajons are far from routine, even with today’s high perfor-
assumptions of molecular simulation are the following: themance computers. However, because of the importance of

choice of intermolecular potential used to calculate interacthree-body interactions, it is highly desirable to include them
tions between molecules; and how many molecules contribin molecular simulations.
ute to the intermolecular interaction. It is commonly assumed
that intermolecular interactions are confined to pairs of mol-
ecules, and contributions involving three, four, or more at-
oms are ignored. When this assumption is invoked, the mog. THEORY
lecular properties are assumed to be “pair-additive.” _
Generally, interactions between pdicé molecules make the A- Intermolecular potentials
The Barker—Fisher—Watfs (BFW) potential was used

aAuthor to whom correspondence should be addressed. Electronic maifo! the pair int?gaCtionS of argon, and the pOtenti_als repqrted
RSadus@swin.edu.au by Barkeret al:> were used to represent the pair interactions
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TABLE |. Summary of the intermolecular potential parameters used in thisand «’, P, andQ are additional parameters obtained by fit-

work. ting data for differential scattering cross sections. The pa-
Argor? KryptorP Xenorf rameters for this potential were obtained from the literdfure
, (Table ).
:/(ka'(‘lf) 54112'395 123 . 52%733; o The contribution from three-body interactions was ob-
o (&) 3.3605 3573 3890 tained from the triple-dipole formula proposed by Axilrod
o (R) 3.7612 4.0067 43623 and Teller®®
Barker—Pompe Bobetic—Barker

o 125 P 125 125 125 Uon(ijk) = v(1+ 3 cost; cose; cosb) 5
o 125 125 pootl) (rijrir o) :
5 0.01 0.01 0.01 0.01
Ao 0.2349 0.292 14 0.235 26 0.2402 Where v is the nonadditive coefficient, and the angles and
A —4.7735 —4.414 58 -4.78686 —4.8169  intermolecular separations refer to a triangular configuration
A, —10.2194 —7.70182 -92 —-10.9 of atoms. Values of the nonadditive coefficients were ob-
A —5.2905 —31.9293 ~80 —250 tained from the work of Leonard and BarkéfTable ). It
A, 0.0 —136.026 -30.0 -50.7 L
A 00 _1510 2058 2000 should be noted t_hat altr_lough there are other_contnbunons
p ~90 59.3 from three-body interactions, recent wdftkconfirms that
Q 68.67 71.1 they largely cancel each other, and that the Axilrod—Teller
Cs 1.0698 1.11976 1.0632 10544 term alone is an excellent approximation for the total three-
Ce 0.1642 0171551 0.1701 0.1660 phoqy interaction. A recent review of intermolecular poten-
Cio 0.0132 0.013 748 0.0143 0.0323

tials is availablée.

&Two-body parameters from Ref. 15.
"Two-body parameters from Ref. 16.
‘Two-body parameters from Ref. 16.

dFrom Ref. 19. B. Simulation details
We performed NVT Monte Carfoand NVT Gibbs
ensembl& simulations for 500 atoms of argon, krypton, and

of krypton and xenon. The BFW potential is a linear combi-X€"ON: The simulations were performed in cubic boxes, and
nation of the Barker—Pomb7e(u ) and Bobetic—Barkéf the conventional periodic boundary conditions were apdﬁed.
(Usg) potentials BP For pair interactions, long-range corrections were used to

recover the full contribution to the intermolecular potential,
U,(r)=0.7%gg(r)+0.25upp(r), (1)  whereas three-body interactions were assumed to be zero at

separations greater than a quarter of the box letfgfior the
where the potentials of Barker—Pompe and Bobetic—Barkeg/T simulations, a total of 40000 cycles were used, with

have the following form: averages being accumulated after 20000 cycles. The run
length for the NVT Gibbs ensemble calculations was 3000,
Caj6 ith averages being accumulated after 1500 cycles. Each
Up(r)=e EA(x 1) exda(1-x)]- E ) wi ges being ed after 1500 cy
2 S+xATE cycle of the Gibbs ensemble simulation involved 500 at-

2 tempted displacements, one volume interchange, and 500 in-
terchange attempts. The two-body enerfy)(was obtained

In Eq. (2), €is the depth of the potentiak=r/r,, wherer . o . :
d.(2) €is P P . m: W " y averaging the contribution of the pair potential over all

is the intermolecular separation at which the potential has 5 tinct pairs of at h the th bod
minimum value. The contribution from repulsion has an ex- istinct pairs of atoms, whereas the three-body enefgy (

ponential dependence on intermolecular separation and tHIQé the average of the Axilrod—Telféfpotential for all dis-
contribution to dispersion of th€g, Cg, and Cyq coeffi- tinct triplets of atoms. The three-body simulations require
cients are included. Thé parameter is a small correction typically 20 and 12 CPU hours on the_ Fujitsu VP300 and
term. The parameters of ER) are obtained by fitting the NEC SX-4/32 supercomputers, respectively.

potential to experimental data for molecular beam scattering,

second virial coefficients, and long-range interaction coeffi-

cients. The values of the parameters used in this work werl!- RESULTS AND DISCUSSION

obtained from the literatuf® and they are summarized in The ratio of three-bodyHs) to two-body ,) energies

Table . " , obtained from the NVT simulations is shown in Fig. 1 as a
For krypton and xenon, the Barket al.™ potential has ¢ nction of reduced number densityX(=pos, where p
the form =N/V, N is the number of atomg/ is the volume, andr is
Up(r)=Ug(r)+uy(r), 3) the molecular diametgrThe temperatures gsed covered the
temperature range for vapor—liquid coexistence of a pure
whereug(r) is identical to Eq(2) andu4(r) is given by fluid. It is apparent that the ratio is a linear function of den-
., ] ’ sity that is consistent with theoretical considerati6hg?
[P(x=1)"+Q(x—1)*]exda’(1-x)], x>1, Furthermore, within the statistical uncertainties of the simu-
uy(r)= ;
0, x=1, lation, the results for argon, krypton, and xenon appear to

(4) obey the same relationship. A least-squares fit of the simu-
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FIG. 1. The ratio of three-body and two-body energies obtained from mo-
lecular simulation at different reduced densities. Results are shown for argon
(A), krypton (+), and xenon([J). The line through the points was obtained FIG. 2. A comparison of NVT Gibbs ensemble calculations with
experimert* (@) for the vapor—liquid equilibria of argon in the reduced
temperature—density projection. Results are shown for the BFW poténtial
(X), the BFWH-Axilrod—Teller potential® (A), and the BFW-three-body

from Eq. (6).
contribution from Eq{(6) potential(O).

lation data for argon, krypton, and xenon yields the follow-
ing empirical relationship between two-body and three-bodyseq in the simulations, and only three different atoms were
considered. However, if these potentials genuinely reflect the

contribution of two-body and three-body interactions, the re-

energies:
2vpE,
Es=— 35 (6)  sult could be valid generally. We emphasize that the relation-
ship should not be used for effective potentials such as the
Lennard-Jones potential. The accuracy of the single relation-

As E, is generally negativek; is positive, which is consis-
tent with simulation data. The above equation is a remarkship for argon, krypton, and xenon may also indicate that the
ably simple result that fits all the simulation data with anyesylt is valid for other atoms.

average absolute deviation of 2.0%. The only constants in
Eq. (6) are the well-known paramete(s and o) that char- |y, CONCLUSIONS
Molecular simulation data indicate that there is a simple

acterize all pair potentials, and a nonadditive coefficient
The relationship is independent of temperature for the range " ; :
relationship between two-body and three-body energies

of densities at which the fluid is normally a liquid. S i
The benefit of Eq(6) is that an accurate estimate of the Thgrefore, the COI’I"[I’IbUtIOﬂ to the energy of three-body |n'Fer-

three-body energy for fluid densities can be obtained fronfictions can be estimated accurately from two-body contribu-
two-body calculations alone. To test the accuracy of this relions without incurring the computational penalty of three-
lationship, we performed Gibbs enserfBlsimulations for Pody calculations. The relationship has the potential of
the phase equilibria of argon with the energies calculatednProving both the accuracy and predictive value of molecu-
from the BFW potential plus the contribution from E@).  lar simulation.
The Gibbs ensemble calculations were performed by first
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It should be noted that, strictly speaking, the validity of g 3 sadusMmolecular Simulation of Fluids: Theory, Algorithms and

the relationship is tied to the pair and three-body potentials Object-Orientation(Elsevier, Amsterdam, 1999
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